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1 Abstract

Recursive algorithms for the solution of lin-

least-squares estimation problems have been
based mainly on state-space models. It has been
kunown, however, that such algorithms exist for
stationary time-series, using input-output de-
scriptions (e.g., covariance matrices). We in-
treoduce a way of classifyinz stochastic processes
in terms of their "distance” from stationarity
that leads to a derivation of an eZficient Levin-~
son-type algorithm for arbitrary (nonstationary)
processes. By adding structure to the covariance
matrix, thesc general results specialize to state-
space type estimation algorithms, In particular,
the Chandrascihar cquations arc shown to be the
natural descendants of the Levinson algorithm.

1. Introduction

The problem of linecar least squares estima-
tion has been studied extensively and various
methods of solution have been developed. These
may be classified into estimation algorithms de-
rived from input-output data or from other "ex-
ternal” systen descriptions and algorithms derived
from state-space or "internal" models. In the last
decade the field of lincar least-squares cstima-
1ion has been dominated by state-estimation, in
particular by the recursive Kalman-Bucy filter
algorithim and its various versions, vhich rely
heavily on the availability of state-space models.

In many applications, however, a state-space
model is not rcadily available, and it would be
preferable to have algorithms that use directly
the covariance information of the observed pro-
cess. Thne solution of the estimation problem is
closely related to the problem of inverting the
covariance matrix. Therefore, the computational
cfficicncy of estimation algorithms is strongly
dependent on the amount of computation required
for inverting an appropriate matrix. For illu-

~4tration we shall mention the important example
of a stationary process and its Toeplitz-type
ovariance matrix. It has been shown [1-3] that
Q)y makling use of the special stiructurve of an N XN
oeplitz matrix, it can be invertud in O(NT) op-
erations (multipllications and additions), compared
oo(fﬁ operations required in gencerval for the
nversion of an arbitrary matrix., It has also
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been long known in certain fields (e.g., gecophys-—
ical data processing [1] and spocch compression
studies [5]1) that recursive solutions can be ob-
tained for tho prediction of stationary processes.
In particular, the so=-called Levinson algorithm
computes the optimal-predictor in 0(N2) operations.

It has scemed in the past that the prediction
of nonstationary processes would require O(N3) op-
crations unless we can impose a state-space siruc-
turc on the signal.:nd noise processes. liowever,
it is not unreasonable to expect that between the
highly structured Toeplitz matrix (or stationary
process) and a completely arbitrary covariance ma=-
trix, there should cxist matrices (or processes)
with varying degrees of structure and that this
structure could be somchow utillzed in reducing
the amount of computation involved in the estima-
tion problem. That this i1s indecd possible has
been first shown in [G] by introducing the concept
of “shift (low) rank,"” sce also (7-9], and subsc-—
quently in [10,11]. These results were motivated
for discrete-time problems by the work of Levinson
[14] and Golub (18], and for continuous-time by
the Chandrasckhar-type equations and their further
developrents in [12,13],

In this paper we shall introduce'.a, an index
of "distance from stationarity” of an arbitrary
nonstationary process. Wec shall show how rccur-
sive solutions requiring of order ONZ operations
can be obtained for such processes with or without
assuming a state-space structure. In the station-
ary case our solution reduces to known algorithass
given in [14,15].

Finally, we shall show that, if the not ncec-
essarily stationary processes are known to cone
from state-space models, then this additional
structural information can be used to recduce our
general solution algorithm to the previously known
Chandrasckhar-type equations. This means that we
have been able to properly imbed the state-space
assumption into a general input-output rramework.

2, A General Linecar Estimation Problem ~

Ve shall consider the problem of estiwmating a
stochastic process x(¢) from observations of a
related process y(«). Let y(.) (p~dimensional)
and  x(+) (n=tluensional) have covariance matri-
cos
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N . . - .
R = [}1.1] 0<1,J <‘N H ri,j"EylyJ
N Xy o Xy _ -

ny!‘ [ri,j] 0<1,3<N; ri,J l-:xiyJ .

The he:Qnear least squares estimate of x

given lyi, 0 <4i<N-1) has the form
N-1
XYY - 1) ™,1)
X(N|N - = h N, Y, -
i XY 1

The optimal one-step ahead predictor h, (N,+) can
be determined by using the well known orthogonal-
ity condition on the prediction error

x\,—:?(xl.‘l-l);yk; 0<Kk<N-1

&

which means
N-1

o=1-:[(x,-£(.\' .\'—1)) ']=z-",’ —z h. (N,1) r
N l 2473 Bl ™ & ey Tk
or in matrix form

xy
K05 £5e rN,N-l] ’ &)
where hl,:y fal [hxy(N,O),...,hxy(N,N-l)], an n XNp
ratrix.

Note that by setting x =y, we get an equa-
tion defining the predictor h(-,+) of the ob-
served process itself, i.e.,

N-1
~
yONIN - 1) = h(N,i) v,
i=0
therefore
N_N-1 §
h'R = [TN,O’ ey, rN,N—lJ - (2)

This can be rewritten as

[—hx,l] B e f0, v, 0,81 (3)

where E 1is determined by the left-hand side of
this cquation. For cstimating x(¢) at n time
instant within the observation interval (O,N), wo
have to find thec optimal filter (smoother)

H_ (-,*;N), where

xy

N

~
= ;1 ;N .
x(klN) x)'(k'i' ) yi

H
1i=0
Using the orthogonality condition again, nowon the
form

~
& N <1<
x, = X(k[N) 1y, 0<1<N
we et
$ xy
N = v 0<kge <N
{&' ny(k,i. ) rt,c rk,e : <ke <

or in matrix form

uN n" = nN (1)
Xy Xy
N A g
ny = ["xy(i.J.N)] ’ 0<1,j<N.

The last two matrix equations illustrate the fact
that solving the estimation problem is closely re-
lated to the problem of inverting the covariance
matrix, since for both solutions of the predic-
tion- and the smoothing-problem we get

-1
NE N Xy Xy
oY - [n ] [rN'O, rN'N_l] (%)
-1
i [n”] g (6)
xy Xy

3. Structural Assumptions
To aid in specifying the structural assump-
tions, we shall introduce some notation for the
"shifted-difference" operators &[.] and _J(-]
that play a central role in this paper.

Let,

where sy, are p Xp matrices (i.e., S 1is a
block matrix). Then define

I
-

sl’1 ove SI,N SO,O ces sO,N—l
5s1 &) o T :
[°N,1 o Snon ] [PN-1,0 00t SRe1Nn-
K e e e 0
50,0 o0,N -0% - ----- o 1
Jis1 8| - Ealli T 08 U TRl
= . . l s :
_SN,O cee sN,N_ 0: g g
| ¢« N-1,0 °°° UN-1,N-1
r—s ] -—
0,01 _ _O,N
= ' .
' 8ls]
|}
...SN’OI P

-
We can now define the (block) displacement rank «
of matrix S as

a & rank 50s1/p] ,

wvhere

x1 Q smallest integer m, such that m > X

N—




Remarks

1. " pai (1.e., vhen S has scalar entries)
then
Q = rank B8[S] .

2. VWhen S 1is a Toeplitz matrix, then 5&[S] =20
end therefore « = 0., If S 1is an arbitrary
natrix, 35(S] may be full rank and then Q =
N. Therefore, a 1s bounded by 0 < a <N,
and the actual value of « 4s an index of
"distance from stationarity' of the matrix S.

Examples

Let T be a full Toeplitz matrix and Lj(Uy)
be lower (upper) Toeplitz matrices.

(i) s=1w, el .,

It can be shown (check for a 3 X3 case) that,
Jw] = 1u’

where 1 1is the first column of L and u' 1is
the first row of U. Therefore, rank J[LU] is
at rost p.

(i1) s=T, a<?.

For Toeplitz matrices B8[T] =0, and in |[T]
only the first row and column may be nonzero.

(11i) $s=U.L, a<3,
(1v) $=T,T, , ag4.
k
) S = :E: LY., @<k.
= s =

Since the matrix B®([S] has a rank < @.p (by
the definition of @), we can always factor it
(noruniquely) as

5(s] = P1 z Pé

with a signature matrix I and Py, P, being
NpXap (block) matrices.

If § 1is a symmetric matrix, so is &(s].
In this case, a (nonunique) symmetric decomposi-
tion can always be found of the form

8[s] =pPZ P’ (i.e., P, = Pz) (7)

where I 1s again the signature matrix.

The question of how to find this decomposi-
tion and furtner details about the displacement
rank « can be found in [(10,11]. For our present
discussion it suffices to know that given an ar-
bitrary covariance matrix R of an observed pro-
cess y(+), we can associate with it a number «
and an Np XZp matrix P such that &R) = prp'.
An inportant exarmple that further illustrates the
reaning of « and P will be preseated in Sce. 5.

We can now procced in solving a general esti-
mation problem by stating our assumptions on the
crosscovariance ny,

8[R 1 =P Z P' (8)
xy Ry

where ny is a NnXOp matrix.

Note that if the processes x(+) and y(*)
are jointly stationary, then

8[rR) =0 , PES=R0N P=0.

5[ny] =0, oy

The motivation behind this assumption is that
in many problems the signal x(+) and the obser-
vations y(:) are connected by a linear relation
of the form

y, =Hx, +v, =2, +V, (9)

where v(+) 1is white noise with unit intensity,
‘uncorrelated with x(-). In this case,

ry 5= r:yiy.'1 = Eziz3 +1- 51,3 =Ryl €1 - 61.J
— . = xy .
= H‘Exiyj + 1 51.5 Hri'J + X «51“1 (10)
'A {o 143
5 e
1!3 1 1 = J

and ny will indced satisfy the assumption (8).
As a matter of fact,

R =diag (H}) R +1
e[}xy

and by operating with 8[:] on both sides we get

P = diag (H]} pxy .

4. The Ievinson-;}pe Algorithm for
the Joint (x,y} Process

Using the assumptions stated in the previous
section on the covariance information, we_can now
give a set of recursions for computing al .

Xy
m+l [ m ] -1 m’ 1 xy -1
h = |0,} + E_M e
Xy "xy mdm 2 ’ hxy rl,Or0,0 )
i3] " m)
0 B
m+l -1
eI E e, & w1 (11b)
A 0 m o m
o
[m]) [
m+l = 2 ~1 0 M
B s 0 o Am hm Cm ’ B = [I 0.-..,0]
ki L (11c¢)
N =N =C M_lc L N. =1 (12a)
m+1 n mmn o 0,0 e
il | 6.0 "
b " Uil Cmsm Ca e ; 3 (12v)




(the size of k™).
The dimenstons of  hyy, AT RN, M VB e e
nXxi, (W+p)xp, (W+p) XT, pxp, Axd, n XA, and

Define & = (x+1)p and 0w = mp

p X{&, respectively. The quantities
to be computed at ench step by

Ey, Cq havo

bt 0
E = [o h"‘] (:)'0 +':~xy .px"z‘.] (13)
m Xy . net m+1,0"
lm,O P z
ro'o 0
C, = [0 Ar'i\] E a
Twir,0 T F

#

m
cen = \ 4
[rnm-l,()' ' rm~t-1,m] B [O’pm] Mm g)

where py, p:y are the mt! block row of P, PXY,
respectively, and

P
e :1 ;
pm

By counting the number of operations required
at thce nth step of the recursion, we get (assuming
p << m and igroring tcrms accordingly) (2n +3p)idd
rmultiplications. Finding h; will thercfore rec-
quire ~(1.5+n/p)A“& multiplications. The proof
of the recursions above is somewhat lengthy and
is given in Appendix A. It is however,
important to note that the auxiliary quantities
A", B™ also obey the following cquations.

o
A" = | o (15)
N
N m
B! 0
Pt =l wlh. (16)
m P P
| 0

The first equation implies that

A" = [—h’",x]'

so that A™ {s just the optimal predictor defined
in the previous secction. Note also that in the
stationary case

QS eee O

tn which case B"™ 1s the smoolhing [ilter “for cs-
timating y, wiven [yl. 1 <4< N}, or in this

case also the so-called "backward predictor' [19%F

20].

Recursive solutions of this type were devel-
oped for the stationnry case by Levinson [14] for
computing h(*,*) and by Wigzins and Robinson
(151 for computing hy,(+,-), Indced, when we
take « =0, P =0 tho cquations (11lb), (1lc),
(12) reduce to the levinson algorithm and (11),
(12) can be shown to be equivalent to the cqua-
tions of “Wiggins and Robinson., Thus, the station-~
ary casc is nicely imbedded in our framewori.

5. State Space Structurc and
Chandrasckhar-Type Equations

The results described so far are quite gen-~
cral and do not require a state space structure.
We shall now show how by imposing morc structurc
on the covariance matrices, the Chandrasckhar-type
cquations can be derived from the levinson-type
equation presented in the previous section.

let y(*) and x(-) be the output and the
state vectors of a linear system driven by white
noise, i.e.,

x = Fix1 + u

141 1 an
¥y SRy Yy
Y e Vo
By =R s Gy
2 = Ex n' = G
L‘uivj I\:OuJ 0

In this case,

U o ' % 0
Exi+1yJ Fi(nxiyj) + Fuiyj "

vhere the last term is zaro for 1 > j. Thereforc,

Xy xy . Y
= Q o . 1
r 1,3 Flli,‘ . f >3 (18)

Also, as already noted carlicr,

Xy
r = i + 16, . . (19)
1,3 ii,] i,J

In the following discussion, we shall thercfore
assume that R, Ryy obey assumptions (18), (19)
which are somewhat weaker than the state-space as-
sumption above.

The optimal filter hxy('.')

was shown to
-
obey equation (1). Thercfore,

%
A Xy
h (t+1,1) r a
1)__:0 xy 4 i,s t+l,s
t-1 "
h_ (t,1) Ty o™ r;yv .
So XY 6 )8




Subtracting these last equations and using (18),
we get

t;_l
h_ (t+1,1) - 1
=) [’xy e T )] Ti,s

+ hxy(t+1,t) rt .

S L 3 Xy
”t+1,s rt,S = (Ft 1) rt,s

or

t-1
2 [h (t+1,1) - h (t,i)] %,
& Uxy Xy ,S

Xy
t,s

= (Ft-l —hxy(t+1,t) Ht) r
and by comparison with (1)
hxy(t+1,i) - hxy(t,i)

= (pt - I-n (e41,0) nt) LR

or
b (841,1) = (I-‘t-hxy(td,t) Ht) h (60 o (20)

Using the estimator cquation
5 £l
3 ~1) =
x(t [t-1) 120 RS A

we get a recursive formula for the estimate,

R(t+1]t)

t
h_ (t+1,1) y
1>=‘o xy =

...1
(Ft - b (t41,0) "t) c%_ h (E:1) ¥y

+ hxy(t+1,t) A
= F x(t]t-1) + b (41,8
' (yt - b (£41,8) Ht)?(t{t—l)) ;45

the usual Kalman-filter equation for the state es-
timates. Note that only hyy(t+1,t) is required
under the state-space structure assumptions!

In the following, we shall assume that F and
H are constant. By considering the defining
equations (1), (2) of h(-,+) and hyy(ey), 1t
is easy to sce that assumption (19) leads to

h(t,s) = lthxy(t,s) s

Therefore, from the definitfons (13), (14) of E,
and ¢, it follows that

N 22)
cm ) Ile ’ (

e . s e ot A

and from the levinson recursions (11la), (11lc) for
hxy and B we have

L1 .-1 t %
h (E41,8) = B CEit=1) + Bty (Bt)

t ~1 t 2
Bt = Nt-lct-l s Bt-the last block row of B~ ,
so that

ho (t+1,8) = h_ (t,t-1) -EME! H'NL . (23)
xy xy

t't Tt-1 Tt-1

This recursion can be rewritten in a2nother form

that 1s easier to compare with the usual Chandra-

sekhar equations,

-1 :

t+1Et-1
(24)

J - - Ll
hxy(t+1't) ht = hxy(t.t 1) Nt- FE ! H

M
1 t+1

The necessary algebra to derive this from (23) is
given in  Appendix B.

In Appendix C we shall also prove that

B, = (F-n Ge,t-0R)E . (25)
Finally, noto that (12), (24), (25) provide a com-
pPlete sct of recursions for computing hxy(t+1,t),
which arc of the Chandrasckhar-type. Indced, a
comparison of our results to thosc presented in
[16]1 shows that cquations (24), (25), (1Za), (12bh)
arc precisely cquations (16), (13'), (15), (14) of
[16] 1f the following chango of notation is made.

h_ (t+1,t) <> K (t) (or h_ (t+l,t) N, <> K ) ;
xy g Xy t

t

N, <> R(t) ,

9 M, <> M,

t B =0
We sce therefore that the Chandrasekhar equa-
tions are naturally induced by the Levinson-type
recursions when the covariance matrices have a
special structure. Furthermore, the paramcter (o
wvhich appears in the Chandrasckhar algorithm can
now be shown to have a meaning in terms of « (or
@), the displacement rank of R (see also [8,91).

To see this, let us recall that for a time-
invariant state-space model

HF"’ijn' 1>
- H' o+ § - (26)
ri,j H"i I J
-3 0
Hz\'i(Fj Hn i< ~
where
= ’
ﬂi Exixi
and 1
= Fn F' + .
ﬂ1+1 i Q
so that,

- =t ,1"" - H'
ri+1,j*1 5™ Hl (“j+l rj)
i

¢ o ok = LIS
= HF (:r1 “0)(1 I




(—-——-‘ﬁn—'..._-~ - - D e .

Writing this In matrix form gives

=N
= '
8 =0 (“1 ﬂo) (0] (28)

where

an cxtended
. obsorvability
5 matrix.

™t

Let us take for simplicity the scalar casc (i.e.,
P=1, ri'
observable, O will be a full rank matrix, and
thercfore

N
aQ = rank 8 = -
a R rank (nl ﬂo) .

Now the Chandrasckhar cquations involve a parame-

ter ab defined as

-1
o = rank [(::1 - KO) - FKOH'(HKOH' + I) HKOF“]

and since the second term in the brackets is of
rank 1,

@=1< ab <a+1,

6. Conclusions

Ve have shown how recursive solutions can be
obtained for the optimal predictor with. covariance
(or input-output) data, whether or not state-space
nodels are available. The complexity of these al-
gorithnms depends on a measurc  of the "distance"
from stationarity of the signal and obscrved pro-
cessces.

A similai- approach makes it possible toderive
a recursive solution for the optimal (filter)
smoother Ilyy. The details will not be prescnted
here (sce [10] for a partial treatment), but it is
iuportant to note that Hy can be computed in
0(032) operations, instcad of 0(N3) required for
a direct solution of equation (4).

In the special case where the processcs are
known to come from a constant-paramctcr state-
space model, the distance from stationarity «a
coincldes with a parameter describing the computa-
tional reductions obtainable by using the previ-
ously known [16] Chandrasekhar equations. More-
over, these general recursions reduce naturally to
the Chandrasckhar cquations in this and actually
also in some rore gencral cases. Note, for exam-
ple, that we made no assumption on Q and our
derivation holds when it is time varying. »Note
also that our approach leads to a derivation of
the Chandrasekhar cquations that does not mention
the iiceati cquations, vhich was at the heart of
the oripginal derivation [16). Actually, the gen-
eral time=varyling Riccati cquation can also be im-
bedded in the framework presented here (sce [17]1).

scalar). Assuming that the system is

r——

Finally, wo should note that these dlscrete-
timo results have closo continuous-time analogs
presented in [13] for the genceral problenm of solv-
ing somo intepral cquatlons, and in [12] dealing
spociflically with tho estlwation probleu, In fact,
it was these results that provided the femcdiate
motivation for the discreto-timo analysis pre-
sented here,

Appendix A

Proof of the levinson-Type Algorithm
for the Joint (x,y) Process

The defining cquation for h:y was given as

m _m-1 Xy Xy
R = sos
hxy [rm’o rm,m-l] (A1)
Therefore,
,[o n" ] R"
xy
0...0...0 r ceves
m c e To,m
=10 hxy . el + > 1 1
. m-— . m- m-
o R - P ZP

Xy Xy
4 [6'rm,0 L rm,m-l] 4 [Ai'o i 0]
+ (n, P"z) [o,p'"'l]
xy
Xy Xy it Xy Xy m-1
=[nwL0"'%wLm] [%wﬂ%:zp J

# [‘\1'0 o] + (n:yp""lr.)[om““l]

where
¥0,0
m &
A1 = [0 h ] .
xy. 5
r
m,0
This can be rewritten as
m m m+1 m rI R
[0 h ] R =h R - E m=-1" (A2)
Xy xy mLO P
where
-
Fa) L r0,0 g Xy XYy
-10 1 ; i 7 (A
En = [0 ‘x)’] . Pm-lz gt [rm+1' n ] 3
z'm,O

Define auxiliary quantitics Am, B™ as

(A3)

[= I -]




shere the last block row of A™ 1s the identity
atrix.

1-—

R n-1 (A1)
m

Ceee D M

Note that from (A2) and (A4) it follows that

o, '
R [o n" ] s EW e (A5)
Xy Xy m' |

X -1
and from the defining equation, h%v = rlYOTO,O'
Using a similar approach, the recursions for A",
B™ are derived,

=
B RO 0
rﬂ gro'o eiais ro‘m+1 0 r
Rm‘l =k +loom
[ > §i 2 . PNl L i
A LF 0 _J) A
[0 T 0
4 0
=|" 6
o |*]: ¥ (A6)
N 0
_n
where
0
0,0
F Q[o Ar"] 4 2
n ! . P)
m+1,0
1 (4]
B" 0
1 j: o
it gl (A7)
(0]
0 = X
Kk M
m m
e & m
kn = [rm+1,0 e rm+1,m] =

Combining the defining equations of Am. B™ and
(A6), (A7) gives

0 ™
m+1 -1
A = — D A, o L , (A8)
Am o mn o n 0
N =N -(k -f[o,p1Iun O
m+1 m mn g m m
.t e X =r (A9)
o} mm om’ 0 0,0 °
where
Fa) -
cm o krn fo,pm] Mm s
Also
st
m+l B —]C i ]
kil - N ’ B, = {1 ©.,..0] .
0 AnJ mom 0

(A10)

and

-1
= - A ~ -
Mm+1 = "m mem Cm ’ M (A11)

To verify (A8), (A9), we premultiply the cquations
by R™1 and cheek that the right-hand side of
these cquations satisfy the defining cquations
(A3), (A1),

Finally, i1t remains to show that Cj = Fp.

The proof is lengthy and shall be omitted. It can

be found in [10,11],

Appendix B

An Alternative form of the Recursion for hx)ﬁt+1t)

i

h‘y(t+1,t) Nt

-1 -1
= i Dl "w )
(hxy(t,t ) EMEL_JION g

-1 . )
(Nt_1 NE,_ M Ei

—1 ’ Al
By (Eot-1) N = EMEL M

1 t t t-1

P\- ' '
t-llt—ln o

- hxy(t,t-l) HE e 5

-14 Nt 3 -1 'Y
# B MOEL NG NE,MELED M

=h y(t,t-l) Nt—

X 1

=1/ ' -1 ¢ )
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In Appendix C, we shall show that

E, = (F -1 . ) 0
t 1xy(t,t 1) 1 E. 4

thercfore ~

-1
h_ (t+1,t) N, = h_ (t,t-1) N - FE_ .M i d
Xy ') t xy( =) ey = Mg
Appendix €
The Recursion of E‘
As a first step, we shall show that




b (Ei8) = (F - b (8,1 u) b (t=1,9)
t—

0<s < t-2 (c1)

From the defining equation (1) for h:y' we know

that 3

Qnt - [ht-1,0]> e
Xy Xy

— | XY Xy SRy XYy
= [rt,O' ""rt,t—l} [rt-l,o ‘e 1t—1,t-2'oi]

vhere
r
£-1 0,t-1
Ai = [h ,0] .
Xy
Tt-1,t-1
Using
XY _ Y
W rit-l,s
gives
(ht 2 [ht-l'o]) pt-1
Xy Xy
= (F= 4 Xy A
(F I)[;t_l'o, s ey rt-l,t~2' 1]
e i
where A, 1s wvhatever is neccssary to satisfy the

last cquation. Hence,

LR o O R
n - [‘.xy ,o] = P I)[hxy,o]

t-1
+ hxy(t,t—l)[—h I] (c2)

Using

h(t,s) = Hhxy(t,s), we can rewrite (C2) as

B = (F - h_ (t,t-1) u)b:t‘l o]
Xy Xy Xy -
+ [0 vees O R (t,t-l)]
xy
which proves (Cl1l).

Let us rewrite the definition (13) of E_ as

t
r0,0 0
: -2
E, = -[o,ht ] % |
*¥J| Fg-1,0
0 0
- ! - Xy XY
- hxy(t,t 3l)[rt'0 :pt-lh] [1t+1,0: P L] -
(c3)
It is also true that
' = Xy xyv]
[rt,0= pt_li] = ”[;L,O :pt 5 (ca)

Using

"

xy foay.)  Loaxy 1 %y
[rt+1,o Py L] ¥ ‘[}t,o :pt—lL]

(c1), (€1), and (C5), we can rewrite (C3) as

(C5)

[F - h_ (t,t-1) u] Nk
Xy Xy

1
]
coe
[
)
T
MN
—_—

g i Xy ! Xy .
+ (F hxy(t,t 1) ")[’t,o 4 L]

(c6)

(F - hxy(t,t-l) u) Et-l .
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